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Abaract. Anexact solutionof the Kondoproblem has been obtained with allowance forthe 
pairing of band electrons with the spins localized at impurity sites. The dependence of the 
gap in the conduction electron state density on the value of the magnetic field has been 
calculated. 

The application of the Betheansatz for calculating the propertiesof the one-dimensional 
Kondo model, in which the singlet pairing of conduction electrons with spins localized 
at impurity sites is taken into account, permitted us to derive a number of exact results 
111. A peculiarity of these solutions is the presence of a gap in the band electron state 
density near the Fermi energy E ~ .  Since the solutions obtained are stable, it is possible 
to regard the proposed electron pairing mechanism in [l] as one of the mechanisms 
explaining the high-temperature superconduction phenomenon. 

The pairs consisting of electrons and localized magnetic moments are localized; 
therefore the Josephson effect is not realized. Taking into account this mechanism of 
pairing the Josephson effect should be considered in the framework of the Anderson 
model, but not in the Kondo model. It is known that the Anderson model with half-filled 
conduction bandsfor V/U d 1 (Vand Uare the parametersof themixinginteractionand 
Coulomb repulsion, respectively) is reduced to the s-d exchange model. 

In the present paper the behaviour of the system in a magnetic field H in the weak- 
field limit H < E~ is considered. The electronic states in a magnetic field are believed to 
consist of two phases: some of the electrons are paired and the remaining electrons form 
states, which are characteristic of the Kondo problem [2,3].  When this treatment is 
used, the magnetic state of the system is described, in the case of weak bonding, by the 
solutions of the Kondo problem [2, 31. This makes it possible to use the solutions 
obtained in this paper to calculate the dependence of the value of the gap in the 
conductionelectronstatedensityon themagnetic fieldamplitude. Asin[l], theimpurity 
concentrationniisconsidered to be arbitraryandisnot limited byn, = 1, whichdescribes 
the Kondo lattice. 

We write the Hamiltonian of the exchange s-d model as 

where interactionsexist only between right-or left-goingwavenumbers. c,'(x), c&) are 
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the operators of the conduction electrons, J is the exchange integral, J > 0 (anti- 
ferromagnetic case); u $ ~  are the Pauli matrices; s, is the spin operator, localized at the 
lattice site x, (we shall consider the case S = 4). 

Let us introduce anomalous averages which describe the contact singlet pairing of 
spinons and band electrons: 

ADO, = ( ~ C - ~ ( X ~ ) ) ,  

(X: is the projection operator, which translates the state with the magnetic quantum 
number U to the empty shell.) In a magnetic field the matrix Aod is degenerate in the 
spin components, which renders the problem unintegrable in the general case. Let us 
consider thesolutionoftbe problem byregarding thematrix AOd asisotropic,i.e. A,. = 

Separating the anomalous averages in (1) we have one more term in the Hamiltonian 
Ao-0. 

%e: 

Now we consider the scattering of electrons on localized spins. The wavefunction is 
determined in the following form: 

lurk)., = I d.Y Ifr,(x,x.)C,'(x)xsp + a(x - x,)fi&,llO) (3) 

where 10) is the function of the vacuum c,(x)lO) = 0; S." 10) = 0; k is the electron 
wavevector. 

The presence of the function f i , ( x . )  in (3) takes into account the pairing of a band 
electron with a spin localized at the lattice sitex,. 

The amplitudes f 2 0 ( x , x , )  and f i o ( x . )  are determined from the Schrodinger 
equation. Using the solution for f i , ( x .  x,) we obtain the following expression for the 
scattering matrix of electrons on localized spins: 

R;:, ( k )  = {[g(k) + 1 + icP;A]/[g(k) + 1 + ic]} exp(i8) (4) 

where 

g(k)  = A?j(l + d / S ) / [ E ( k )  - Ai]  
E ( k )  is the electron energy which is measured from the Fermi energy; Pf;  is the 
permutation operator: A i  = (9 /S )JI  AI'. 

Following (4) the scattering matrix of electrons pairing with localized spins depend 
on the electron wavevector. When the unpaired electrons are considered, it is necessary 
to put A = 0 and the matrix R does not depend on the electron wavevector, as in the 
case of the Kondo problem [2,3]. Let us consider the two-electron function 
q 3 ~ l o l A z o z ( ~ l , ~ 2 )  (xl andxz are the coordinates of electrons). From equation (3) for the 
one-electron wavefunctions we write ~ ~ , ~ , k ~ , , z ( x l r ~ Z )  as 

8= -2 tm-'(J/8) C =  J/2(1 -3J2/64) .  

@i,olk2mz(xl> X?)lO) = ~ y l c , o , k z o 2 ( ~ I  9 XZ)COtl (xI)c:2(x2)xc 10) 

+ exp(ik 1x fizoz(o)cXx ,)lo) + expC&xd h lo, (O)c;,(x~)iO) (5) 
where the last two terms describe the one-electron state without impurity spin. The 
wavefunction q3;,0,k2,,I (x,, x?) satisfies the Schrodinger equation. The last two terms do 
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not depend on the electron distance; therefore the electron scattering matrix is deter- 
mined by the amplitude Yg, , lk20 , (~ l ,~2 ) .  The expression for YIlj ,o,k2gl(~lr~2) is 
obtained from the solution of the Schrodinger equation: 

%,o,k,o,(Xl,X2) = [exp(ik,xl + ik2.d - exp(ik,x, + ikl~2)lASK,o,k,o, x1 ' X 2  

X1 <xz 

(6) 

= [exp(iklx, + ik2x2) - exp(ik2xl + i k , ~ ~ ) ] s ~ : ~ i A ~ , , ; ~ , , ;  

where Af,olk202 is an arbitrary constant tensor and sz:I?(kl, k2 )  is the two-particle 
scattering matrix of electrons: 

(7) 
(I 0' 0 1 4  i 

so~Jk, , k2) = Wd - g(k2) - icf'020ili[g(klj - g(kd - 4. 
The N-particle wavefunction is determined according to the Bethe ansarz. The matrix 
R (4) and the matrix S (7) satisfy the Yang-Baxter equations and therefore the problem 
is integrable. 

For definiteness it is considered that Ne 2 Ni ( N e  is the number of conduction 
electrons; Ni is the number of impurity atoms). In the case H = 0, N :  = N: and 
NJ = N )  (Nil and Nit are the numbers of spin-up and spin-down magnetic moments; 
N? and NJ are the numbers of spin-up and spin-down electrons). 

If H # 0 we have N J  # Nil and N J  # N i  . We obtain the solution of the problem 
with a magnetic field as in the case H = 0, assuming that N: = 2N) are the number of 
electrons paired with localized spins and the rest of the electrons, Ne - N:  in number, 
form electronic states as in the case of the Kondo problem. The two-particle wave- 
function of the unpairedelectron is determined from (3) withfi,(x,) = 0. For N: paired 
and Ne - N: unpaired electrons the wavefunction is defined by the two-particle 
wavefunctions (3) withJ'L&.) # 0 andfi,(x,) = 0, respectively; therefore the matrix 
S is determined from (7) with A # 0 and A = 0, respectively. In this approach the matrix 
A,,isstillisotropic,asinthecaseH = 0,andthevalueofAdependsonH. Todetermine 
the eigenvalues of the Hamiltonian (1) and (2) we must impose periodic boundary 
conditions on the N-particle wavefunction. The problem is reduced to the problem of 
eigenvalues of the matrix: 

Ti =sjj+i (kj ,kj+i ) .  . . s j N , ( k j , k ~ ~ ) R j i ( k j , k , ) .  . . R j ~ , ( k j , k ) .  . .sjj-i(kj,kj-i). 

We shall write the Bethe equations for the Kondo model using the Bethe ansatz formal- 
ism, and taking into account the spinon-electron pairing: 

M g(k,)  -A, - ic/2 
exp(ikiL) = exp(-iNi8) 

.=lg(ki) - h,  + icf2 
m (8) 

h, - g ( k i )  - ic/2 hm + 1 - ic/2 N i  he - hfl - ic ) =-TI A ,  - h, + ic' 
N ,  rI 
i=l he - g ( k , )  + ic 

Here 
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L is the chain length; M is the number of spin-down particles. The energy of the ground 
state is defined in a particular way: 

N e  

Eo = 2 ki 
i = 1  

where the values of k, are obtained from equations (8). 

distribution density p(k) and for the rapidity distribution density a@): 
In the thermodynamic limit, equations (8) are written for the electron momentum 

_I ~ 

1 Di 1 c  
p(k)=---g'(k)/ h 2 J C  - E  dAo(A) [A - g(k)]' + c2/4 

C 1 + -ni 2n (A + 1)2 + c2/4' 

The set of equations (9) must be completed by conditions which determine the mag- 
netization density m, i.e. 

(10) 
(n,  + ne) - 

2 
m =  

and the band electron density ne. i.e. 

nc = dk p ( k ) .  

Let us consider the solution of the set of equations (9) in a magnetic field. The value 
ofBisdetermined byequation (10) asafunctionofthe magnetic field. Thecaseofstrong 
interaction (1 - 1) is not considered, The dependence of p(k) on His  weak in the case 
of weak interaction ( J  < l) ,  as follows from equations (9) and (IO), and is proportional 
to H / k  The value of A in the magnetic field depends on H a s  a function of the density 
of impurity spins paired with conduction electrons. We denote thisdensity by nl. Taking 
into account only the dependence of A on H ,  we obtain an integral equation for @(z) 
with the symmetrical kernel Z(z): 

-21 

-22 
p'(r) - dr' %'(z - z')p"(z')  - dz' 3E(z - z')p'(z')  

where 

describes only paired conduction electrons, whose density is n: 
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The limits of integration with respect to z are determined according to [ l ] :  

Z1 = A$(1 + d / 8 ) / ( k F  + A:) Z2 = Ai(1 + d / S ) / ( k ,  - ko + Ai) .  

At an arbitrary exchange integral value, equation (12) can be solved by expanding the 
functionsintoaFourierseries.Takingintoconsideration thecondition(ll),thesolution 
for&) in the case of weak interaction is [ l ]  

(13) p"(z)  = -n:%(z) - A:(l + d/8)/2nz2 - nfX(z + 1) + O(A3). 

Fromequation (11) we obtain the value of ko: 

ko = k F - A o ~ ~ [ n ~ I n 2 + n c n ~ X ( l ) ] ' ~ * .  (14) 
The energy ko of the upper occupied state is lower than k f ;  therefore, a gap whose 

width is kF - ko appears near the Fermi energy in the band electron state density. 
According to [l] the equation for the determination of A can be written as 

c' = 3/45. 

In an approximation which is linear in H, the conduction electron density in a 
magnetic field varies as n,(s) = ne($ + H s / E ~ )  (s = -1,i); therefore n: = ne(-$) .  Anal- 
ogously we determine nf from equation (10) as n: = ni(-B). The solution of equations 
(9) and the value of B in the weak magnetic field approximation were obtained [ 2 , 3 ] .  
Let us make use of the results of these studies and obtain 

T, = ( ~ / n e ) ~ / * 2 ~ ,  exp(-n/c) 

where r(x) is a gamma function. The value of B does not depend on A to an accuracy of 
A3. Therefore, the dependence on A was omitted in the expressions for T,. 

The solution of equation (15), which was obtained in [l] as a logarithmic approxi- 
mation, is 

v = n:/n:. (17) 

The exponential dependence on the concentration of localized spins which form 
pairs with conduction electrons determines the value of A. The change in conduction 
electron concentration in a magnetic field is small as H / n ,  whereas the value of nf 
depends on the field according to equation (16) with the characteristic scale TH; the 
value of TH is of the order of the Kondo temperature. At H < TH, the function nf can 
be expanded in powers of HITH. For H > TH, equation (16) can be expanded in the 
powers of the invariant charge. 

The dependence of the electron density n: on the magnetic field is shown for com- 
parison (figure l(a)). Figure l(b) shows the dependence of A on the magnetic field; it is 
expressed in units of TH and was calculated from equation (16) for the Kondo lattice 
ni = ne. From the presented calculation, A(H)  has a stronger non-linear dependence on 
the value of magnetic field than the impurity magnetization in the Kondo problem or 
the concentration n f ( N )  do. The stability of the superconducting phase in a magnetic 

A = $[(J/c + J'/S)nf In 2]-'/2kf exp(-nv/c') 



2336 I N  Karnaukhoo 

Figure 1. (a) Concentration of spins paired with conduction elecirons n:/n8 as a iunction of 
H/TH.  (b)  A(H)/A(O)  as a function of HIT,  for different values ofc': curve A, c' = 1; curve 
B,c'  = 0.5;curve C.c' = 0.1. 

field is defined in the same way as in [l] with the only difference that the dependence of 
A on Hmust be taken into account. 

When superconducting pairs are subjected to breakdown in a magnetic field, the 
formation of Kondo states in the lattice takes place. Therefore, in a magnetic field, 
Kondo states exist in a superconductive phase. 
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