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Abstract. An exact solution of the Kondo problem has been obtained with allowance for the
pairing of band electrons with the spins localized at impurity sites. The dependence of the
gap in the conduction electron state density on the value of the magnetic field has been
calculated.

The application of the Bethe ansatz for calculating the properties of the one-dimensional
Kondo model, in which the singlet pairing of conduction electrons with spins localized
at impurity sites is taken into account, permitted us to derive a number of exact results
[1]. A peculiarity of these solutions is the presence of a gap in the band electron state
density near the Fermi energy ¢r. Since the solutions obtained are stable, it is possible
to regard the proposed electron pairing mechanism in [1] as one of the mechanisms
explaining the high-temperature superconduction phenomenon.

The pairs consisting of electrons and localized magnetic moments are localized;
therefore the Josephson effect is not realized. Taking into account this mechanism of
pairing the Josephson effect should be considered in the framework of the Anderson
model, but not in the Kondo model. It is known that the Anderson model with half-filled
conduction bands for V/U < 1(V and U are the parameters of the mixing interaction and
Coulomb repulsion, respectively) is reduced to the s—d exchange model.

In the present paper the behaviour of the system in a magnetic field H in the weak-
field limit H <€ g¢ is considered. The electronic states in a magnetic field are believed to
consist of two phases: some of the electrons are paired and the remaining electrons form
states, which are characteristic of the Kondo problem [2, 3]. When this treatment is
used, the magnetic state of the system is described, in the case of weak bonding, by the
solutions of the Kondo problem [2, 3]. This makes it possible to use the solutions
obtained in this paper to calculate the dependence of the value of the gap in the
conduction electron state density on the magnetic field amplitude. Asin[1], the impurity
concentration #;is considered to be arbitrary and is not limited by #; = 1, which describes
the Kondo lattice.

‘We write the Hamiltonian of the exchange s—d model as

w==i3 [are g el 43 S [drow-rdwone@s

RO,

where interactions exist only between right- or left-going wavenumbers. ¢} (x), c,{(x) are
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the operators of the conduction electrons, J is the exchange integral, J > 0 (anti-
ferromagnetic case);, ¢%, are the Pauli matrices; S, is the spin operator, localized at the
lattice site x, (we shall consider the case § = 4).

Let us introduce anomalous averages which describe the contact singlet pairing of
spinons and band electrons:

Aaa‘ = <Xga.c-o(Xn ))

{ X% is the projection operator, which translates the state with the magnetic quantum
number ¢ to the empty shell.) In a magnetic field the matrix A,, is degenerate in the
spin components, which renders the problem unintegrable in the general case. Let us
consider the solution of the problem by regarding the matrix A, asisotropic,i.e. A,y =
Ay g

Separating the anomalous averagesin (1) we have one more term in the Hamiltonian
¥

3JA
o= p j dr 8(x = 2 ()X = ¢t ()X + e, @)
Now we consider the scattering of electrons on localized spins. The wavefunction is

determined in the following form:
19055 = [ dx [flo, 52063 00X + 805 = x) o]0 3

where |0} is the function of the vacuum c,(x)|0} = 0; SZ |0} =0; k is the electron
wavevector.

The presence of the function f5,(x,) in (3) takes into account the pairing of a band
electron with a spin localized at the lattice site x,,.

The amplitudes f4.(x,x,} and fio(x,) are determined from the Schrédinger
equation. Using the solution for f},(x, x,) we obtain the following expression for the
scattering matrix of electrons on localized spins:

Ry (k) = {[g(k) + 1 + icPg]/[g(k) + 1 + ic]} exp(i¥) (4)
where
g(k) = AJ(1 + J/8)/[E(k) — Af]  ¥=-2tan”'(J/8) c=17/2(1 —3J%/64).
E(k) is the electron energy which is measured from the Fermi energy; PZ, is the
permutation operator: A% = (9/8)J|A|%.

Following (4) the scattering matrix of electrons pairing with localized spins depend
on the electron wavevector. When the unpaired electrons are considered, it is necessary
to put A = ( and the matrix R does not depend on the electron wavevector, as in the
case of the Kondo problem [2,3]). Let us consider the two-electron function

@k 01k202 (%1, X2) (x1 and x; are the coordinates of electrons). From equation (3) for the
one-electron wavefunctions we write @%,q, k0, (%1, X2) as

(ﬁi]a]kzo'z(xl 3 x2)|0) = \pshmkzoz(xl ’ x2)C;1 (xl)C;z(x2)Xéo [0)
+ exp(ik;x1) flooy(0)c5, (X1 )10} + explikaxz) fi 1o, (0)cT, (x2)10) (5)

where the last two terms describe the one-electron state without impurity spin. The
wavefunction @, «.0, (¥1, X2 ) satisfies the Schrddinger equation. The last two terms do
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not depend on the electron distance; therefore the electron scattering matrix is deter-
mined by the amplitude W , (.0,(%1,X;). The expression for W} ; 4.0, (¥1,%2) is
obtained from the solution of the Schrédinger equation:

WS orkaor (¥ 1, X2) = [explikyxy + ikax,) — exp(ikaxy + ik1x2)]A% 0 k200 X =X,
= {exp(ik;x, + ikqx;) ~ exp(ik,x; + 1k1x2)]sa;a;’4hoikza'z Xy <X,
(6)

where A} ; k.0, IS an arbitrary constant tensor and s:;:;(kl, k) is the two-particle
scattering matrix of electrons:

ST ky, ko) = [gky) — 8(ks) — P77 ffglky) — glkz) — ic]. (7)

The N-particle wavefunction is determined according to the Bethe ansatz. The matrix
R (4) and the matrix S (7) satisfy the Yang—Baxter equations and therefore the problem
is integrable,

For definiteness it is considered that N, = N; (N, is the number of conduction
electrons; N; is the number of impurity atoms). In the case H =0, N} =N} and
NS =N} (N} and N are the numbers of spin-up and spin-down magnetic moments;
N} and N are the numbers of spin-up and spin-down electrons).

If H # 0 we have N # N} and NJ # N} . We obtain the solution of the problem
with a magnetic field as in the case H = 0, assuming that N2 = 2N} are the number of
electrons paired with localized spins and the rest of the electrons, N, — N in number,
form electronic states as in the case of the Kondo problem. The two-particle wave-
function of the unpaired electron is determined from (3) with f§,(x,) = 0. For N? paired
and N, — N: unpaired electrons the wavefunction is defined by the two-particle
wavefunctions (3) with f§,(x,) # 0 and f},(x,) = 0, respectively; therefore the matrix
Sisdetermined from (7) with A 3= O and A = 0, respectively. In this approach the matrix
A isstill isotropic, asin the case H = 0, and the value of A depends on H. To determine
the eigenvalues of the Hamiltonian (1} and (2) we must impose periodic boundary
conditions on the N-particle wavefunction. The problem is reduced to the prablem of
eigenvalues of the 7; matrix:

Ty = Sje1(hi Kpar) - - Sy (ks R IR (K ) Ry (s ) - 821K By).

We shall write the Bethe equations for the Kondo mode] using the Bethe ansatz formal-
ism, and taking into account the spinon~electron pairing:

Ay
exp(ik;L) = H gE: ; P Mﬁ 1p(—iN; %)
N, . . m : ®
l-[ ~ g(k;) — ic/2 (?L,,, +1- 10/2) 1- Ay —ic

o1 Ag —glk) +ic \A, +1+ic/2 por e .?Lﬁ+1c'

0202

Here
. {A%(l + cJ/8)/[E(k;) — Af] i< N;
k) =1, NE<i<N,
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L is the chain length; M is the number of spin-down particles. The energy of the ground
state is defined in a particular way:

N,
=2 k;
i=1
where the values of k; are obtained from equations (8).

In the thermodynamic limit, equations (8) are written for the electron momentum
distribution density p(k) and for the rapidity distribution density o(/A):

1 [ © 1 _ e
Pk =57~ 2,80 LB ST T R
2 PP S !
o(h) + = f_BcM o) Gy f_ko o)y O

c 1
o
2+ 1)+ ct/4
The set of equations (9) must be completed by conditions which determine the mag-
netization density m, i.e.

(nl + nc)

f dA o(A) (10)
and the band electron density n, i.e.
k
n, =J "k plk). (11)
—ky

Let us consider the solution of the set of equations (9) in 2 magnetic ficld. The vatue
of Bisdetermined by equation (10) as 2 funciion of the magnetic field. The case of strong
interaction (J ~ 1) is not considered. The dependence of p(k) on H is weak in the case
of weak interaction (J < 1), as follows from equations (9) and (10), and is proportional
to H/m. The value of A in the magnetic field depends on H as a function of the density
of impurity spins paired with conduction electrons. We denote this density by n{. Taking
into account only the dependence of A on H, we obtain an integral equation for p*(z)
with the symmetrical kernel £(z):

-z z,
p(z) - f dz' 9(z - 2)p (") - j dz' 20z - 2)p*(2")

-Z3 Z)
AL+ d/8)

s -ni¥(z+ 1) (12

2(2) = % Jm dw exp(iwz) m :

-0

where

5 = olkV/ ' (k
p*(2) = p(k)/g' (k) k= (ks + A3) sgn k + A3(1 + cJ/8)/z

describes only paired conduction electrons, whose density is ni.
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The limits of integration with respect to z are determined according to [1]:

Atan arbltrary exchange 1ntegral value, equation (12} can be solved by expanding the
functions into a Fourier series. Taking into consideration the condition (11), the solution
for p'(z) in the case of weak interaction is [1]

p'(2) = —ni8(z) — AJ(1 + cJ/8)/2nz? — ni%(z + 1) + O(A%).  (13)
From equation (11) we obtain the value of &q:

ko = ke — Ay V2(1/c + T/8) [15 In 2 + menf $(1)]12, (14)

The energy k of the upper occupied state is lower than kg; therefore, a gap whose
width is kr — k; appears near the Fermi energy in the band electron state density.
According to [1] the equation for the determination of A can be written as

7" N_E E(k ) 1+ (1 ¥ g(ka)l " Ejf(jc )} ) (15)
¢ =3/4J.

In an approximation which is linear in H, the conduction electron density in a
magnetic field varies as n.(s) = n.(3 + Hs/e) (s = —4, 3); therefore nt = n,(—4). Anal-
ogously we determine n{ from equation (10) as #f = n,(—1%). The solution of equations
(9) and the value of B in the weak magnetic field approximation were obtained [2, 3].
Let us make use of the results of these studies and obtain

nt = _Tf ot (_ E) - exp[~2ix In (TEH)] »
Ty = (2/me) 2 2ep exp(—n/c)

where I'(x) is a gamma function. The value of B does not depend on A to an accuracy of
A3, Therefore, the dependence on A was omitted in the expressions for T

The solution of equation (15), which was obtained in [1] as a logarithmic approxi-
mation, is

A=/ c+ /8 n2]"Vkpexp(—mw/c) v=ni/mi. (17)

The exponential dependence on the concentration of localized spins which form
pairs with conduction electrons determines the value of A. The change in conduction
electron concentration in a magnetic field is small as H/x, whereas the value of n}
depends on the field according to equation (16) with the characteristic scale Ty; the
value of T}, is of the order of the Kondo temperature. At H < Ty, the function # can
be expanded in powers of H/Ty. For H > Ty, equation (16) can be expanded in the
powers of the invariant charge.

The dependence of the electron density #{ on the magnetic field is shown for com-
parison (figure 1(a)). Figure 1(b) shows the dependence of A on the magnetic field; it is
expressed in units of Ty and was calculated from equation (16) for the Kondo lattice
n; = n.. From the presented calculation, A(#/) has a stronger non-linear dependence on
the value of magnetic field than the impurity magnetization in the Kondo problem or
the concentration #{{H) do. The stability of the superconducting phase in a magnetic
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Figure 1. {) Concentration of spins paired with conduction electrons #}/n, as 2 function of
H/Ty. (0 A(H)/5(0) asa function of H/Ty for different values of ¢': curve A, ¢ = 1; curve
B.¢' =05, curve C, ¢ = 0.1, N

field is defined in the same way as in [1] with the only difference that the dependence of
A on H must be taken into account.

When superconducting pairs are subjected to breakdown in a magnetic field, the
formation of Kondo states in the lattice takes place. Therefore, in a magnetic field,
Kondo states exist in a superconductive phase.
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